If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4u^2+20u+9=0
a = 4; b = 20; c = +9;
Δ = b2-4ac
Δ = 202-4·4·9
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-16}{2*4}=\frac{-36}{8} =-4+1/2 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+16}{2*4}=\frac{-4}{8} =-1/2 $
| -1/3x-52=-175 | | x3-4x-10=0 | | 2x+25=3x+9 | | 500000000000000x.18= | | p-6/2=p-4*2 | | (2/y+2)-(3/y)=5 | | -1+11x=10x+1 | | 20x-8=44 | | 2x÷67=87x | | 7/4z-1/6=17/16+3/4z | | 150m-75m+43,200=45,225-150m | | 3(4x–2)=–12x–6 | | 3(4x–2)=12x–6 | | 3x+5=6x−11 | | 2u-8=6 | | 500+15x=4100 | | 417+16.50x=1159.50 | | 71/33=x/5.5 | | 414+17.50x=1114 | | x/4-14=10 | | 15+7c=43 | | 15+7c=42 | | 2=v/3-12 | | 1/2x+1/4x=18 | | 2450+230.25x=5673.50 | | 16x+12=18x+2 | | 7-5x+x=34 | | 245+15x=350 | | 3x+7=3x-1+8x | | x^2-2x+16=15 | | x^2-18x+6=150 | | 6t-5;t=7 |